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LETTER TO THE EDITOR

Discrete version of the Chazy class III equation

Simon Labrunie† and Robert Conte
Service de physique de l’état condenśe, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 17 July 1996

Abstract. We study the discretization of the Chazy class III equation by two means: a discrete
Painlev́e test, and the preservation of a two-parameter solution to the continuous equation. In
this way we achieve an optimal discretization scheme.

1. Introduction

The Chazy class III equation [1]

C ≡ u′′′ − 2u u′′ + 3u′2 = 0 (1)

is such that the only singularity of its general solution is a movable noncritical natural
boundary, a circle whose centre and radius depend on the three initial conditions of the
Cauchy problem. Thus, equation (1) has the Painlevé property.

Our aim is to obtain a ‘most faithful’ finite-difference representation of this equation.
To do so, we shall first explain our method of getting the discretizing ansätze for differential
equations. Second, we will demand that the discrete equation possess the ‘discrete Painlevé
property’ defined in the sense of Conte and Musette [2]. Finally, we will examine the
preservation of a two-parameter solution to equation (1).

2. Faithful discretization of an ODE

Given a (continuous)N th-order differential equation

∀ x E(x, u(x), . . . , u(N)(x)) = 0 (2)

of degreem in u(N), a discretization scheme may be called a(faithful) discrete versionof (2)
if it satisfies the four conditions:

(i) It is an N th-order finite-difference equation, i.e. an iteration relation betweenN + 1
values of the unknown functionu taken at points in an arithmetic sequence:

∀ x, ∀ h E(x, h, u(x + k0 h), . . . , u(x + (k0 + N) h)) = 0 (3)

The parameterh is called thestep of the finite-difference equation; the constantk0 is
an origin whose utility will become clear later.

(ii) (If equation (2) has the Painlev´e property.) It is of degreem in the first and last term,
u(x + k0 h) and u(x + (k0 + N) h), whose presence is dictated by the highest-order
derivative.
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(iii) It is invariant under(k0, h) 7→ (−k0, −h). The reason for this condition is that the step
h in equation (3) can be arbitrarily chosen in a neighbourhood of the origin, and hence
be changed for its opposite.

(iv) Naturally, its continuous limit (h → 0) is equation (2).

We shall refer to these conditions as thenaive discretization rules. The reason for this
terminology is that they simply ensure a formal, easily noticeable, similarity between a
differential equation and its discretization scheme. They donot imply the preservation of the
distinctive features of the continuous equation, such as the Painlevé property, linearisability,
analytic expression of the general solution, etc.

In the case of equation (1), we have a third-order differential equation which is of first
degree in the third-order derivative. Hence, a faithful discrete version of equation (1) is a
relation betweenu = u(x − 3h/2), u = u(x − h/2), u = u(x + h/2), u = u(x + 3h/2), of
first degree inu andu, and invariant underh 7→ −h, u 7→ u, u 7→ u.

There is only one discrete version of the termu′′′ satisfying these conditions:

h−3 (u − 3u + 3u − u)

but there area priori three linearly independent discrete equivalents ofu u′′; hence this
term will be discretized as

λ1 h−2 1
2

(
u(u − 2u + u) + (u − 2u + u)u

)
+λ2 h−2 1

2

(
u(u − 2u + u) + (u − 2u + u)u

)
+λ3 h−2 1

2

(
u(u − 2u + u) + (u − 2u + u)u

)
with λ1 + λ2 + λ3 = 1. Similarly, the termu′2 possesses three valid discrete equivalents,
and will be discretized as

µ1 h−2 (u − u)2 + µ2 h−2 (u − u) (u − u) + µ3 h−2 (u − u) 1
4(u − u)

with µ1 + µ2 + µ3 = 1. We thus obtain an expressionE whose continuous limit isC, the
left-hand side of equation (1). We notice thatE depends solely on the two parameters

µ′
1 = µ1 − 1

3(2λ1 + 3λ2) + 2
9 µ′

2 = µ2 − 1
3(λ2 − 2λ1)

namely the naive discretization of (1) is

E ≡ h−3
(
u − 3u + 3u − u

)
+ 1

12h
−2

(
16(u u + u u) − 3u u − 27u u − u u − u u

)
+ 3

4µ′
1 h−2

(
4(u u + u u) − 3u u − 3u u − u u − u u

)
+ 3

4µ′
2 h−2

(
u u + 4(u2 + u2) − 7u u − u u − u u

)
= 0 . (4)

3. Discrete Painlev́e test

Consider anN th-order finite-difference equation like equation (3), depending on a step
h. We say this equation has the(discrete) Painlev´e property iff its general solution
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x 7→ u(x; h . . .) is free from movable critical points in thex plane, providedh belongs to
a suitable neighbourhood of the origin.

Suppose that the finite-difference equation under consideration possesses a continuous
(h → 0) limit like equation (2). Then we can apply to it a discrete Painlevé test, called the
method of perturbation of the continuous limit. It was originally set up by Conte and Musette
in [2], and is an analogue of the perturbative Painlevé test for continuous equations [3].

This test consists of making a perturbative expansion of the general solutionu of (3) in
function of ana priori extraneous parameterε. This induces a similar expansion ofE:

u =
+∞∑
n=0

εn u(n) E =
+∞∑
n=0

εn E(n)

which has the following property: all equationsE(n) = 0, n > 1 are the same linear
equation with different right-hand sides, namely

E(n) ≡ 〈
dE(0), u(n)

〉 + R(n)(u(0), . . . u(n−1)) = 0

where〈dE(0), u(n)〉 denotes the differential (or Ĝateaux derivative) ofE(0), taken atu = u(0),
acting on the test functionu(n).

The choiceε = h has the extra property thatE(0) = E , the continuous limit ofE. Then,
a necessary condition for equation (3) to possess the Painlevé property is that the general
solutionu(n) of every equationE(n) = 0 be free from movable critical singularities.

Practically, we seek all possible Laurent series representations

u =
+∞∑
n=0

εn
+∞∑

j=ρ n

u
(n)
j χj+p χ = x − x0

where ρ is the least Fuchs index of the linearized zeroth-order equation dE(0) = 0. In
this expansion a free parameter,u

(n)
j , enters at each ordern of perturbation every timej

is a Fuchs index of dE(0); and the Painlev́e property implies that all the corresponding
coefficientsE(n)

j of χj+p in E(n) are zero.
We have applied this test to equation (4). At order 0, we get equation (1):

E(0) ≡ u(0)′′′ − 2u(0) u(0)′′ + 3
(
u(0)′)2 = 0

which admits the solutionu = −6χ−1. Then the Fuchs indices of

dE(0) ≡ ∂3 − 2u(0) ∂2 − 2u(0)′′ 1 + 6u(0)′ ∂

are −3, −2, −1. At perturbation order one, we haveE(1) ≡ 〈dE(0), u(1)〉 = 0, whose
solution is chosen asu(1) = (

u
(1)

−3 χ−3 + u
(1)

−2 χ−2
)
χ−1.

At perturbation order two, we get the condition

E
(2)

−2 ≡ µ′
2 = 0 .

Then, if this condition is satisfied, the general solution of equation (4) is free from movable
critical singularities up to perturbation order 16 at least, and most probably up to infinity.
Thus, there are great chances that equation (4) has the Painlevé property whenµ′

2 = 0.
This conditionµ′

2 = 0 is also the only one given by the singularity confinement criterion
of Grammaticoset al (see [4] for this test).
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4. Two-parameter solutions

Singularity analysis has given us a one-parameter family of acceptable discrete versions of
equation (1), namely equations (4) withµ′

2 = 0. But the examination of the more specific
properties of equation (1) leads us to restrict our choice, because not all equations (4)
preserve these features even ifµ′

2 = 0.
For instance, equation (1) admits a two-parameter particular solution

u(x) = −6
x − c1

(x − c2)2
(5)

with c1, c2 arbitrary in the complex plane. Demanding the preservation of the solution (5)
for any c1 and c2 yields that the two conditionsµ′

1 = 0 and µ′
2 = 0 should be satisfied.

Hence, the most faithful discretization scheme is

γ ≡ h−3
(
u − 3u + 3u − u

)
+ 1

12 h−2
(

16(u u + u u) − 3u u − 27u u − u u − u u
)

= 0 .

(6)

Eliminatingc1 andc2 betweenu(x) calculated by (5) and its first two derivatives yields
the least-degree second-order differential equation satisfied by (5):

S ≡ 9u′′2 + 2(u2 − 9u′) u u′′ + 3(8u′ − u2) u′2 = 0 . (7)

The link between equations (1) and (7) is

S ′ − 2u S = 2(u3 − 9u u′ + 9u′′) C (8)

and equation (5) is not a solution ofu3 − 9u u′ + 9u′′ = 0.
Let us examine how we can faithfully discretize equations (7) and (8). By the naive

discretization rules, a discrete version of equation (7) should be a relation betweenu = u(x),
u = u(x + h) andu = u(x − h) of second degree inu andu and invariant underh 7→ −h,
u 7→ u.

Eliminatingc1 andc2 betweenu, u andu calculated by equation (5), we get the following
infinite-order discretization scheme:

9h−4 (u − 2u + u)2 + 3h−3 (u − u) (2u2 + u (u + u) − 4u u)

+h−2
(

1
4 u2 (u2 + u2) − 2u u u (u + u) + 4u2 u2 − 1

2 u2 u u
) = 0 (9)

whose general solution is automatically (5). We check that equation (9) satisfies the naive
discretization rules.

As for the discretization of equation (8), we must pay attention to the fact that
equations (6) and (9) do not involve the same values ofu, despite the misleading use
of similar notation. To transpose equation (9) into the world of third-order finite-difference
equations, we can think of two possibilities:

• σ defined as the left-hand side of equation (9) shifted to the right by half a step, i.e.
formally u 7→ u, u 7→ u, u 7→ u.

• σ defined as the left-hand side of equation (9) shifted to the left by half a step, i.e.
formally u 7→ u, u 7→ u, u 7→ u.

Then the four-point discretization of the left-hand sideS ′ − 2u S of equation (8) must obey
the naive scheme

ω = (σ − σ)/h − λ1(u σ + u σ) − λ2(u σ + u σ) − λ3(u σ + u σ) − λ4(u σ + u σ)
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with
∑4

1 λi = 1. A necessary condition forω having the left-hand sideγ of equation (7) as
a factor is that the resultant ofγ andω—both being seen as polynomials inh−1—be zero.
This happens if and only if

(λ1, λ2, λ3, λ4) = (− 4
3, 1

12, 0, 9
4

)
.

In that case, we check thatω = f γ , with the factor

f = 1
4

(
u u2 + 16(u u2 + u u2) − 8u u (u + u) − 5u u (u + u) + u2 u

)
+3h−1

(
u u − u2 − 4(u u − u u) + u2 − u u

)
+ 9h−2

(
u − u − u + u

)
having as its continuous limit 2(u3 − 9u u′ + 9u′′), i.e. the proportionality factor between
S ′ − 2u S andC in equation (8).

5. Conclusion

The example treated in this letter has shown the efficiency of the method of perturbation
of the continuous limit. It has recovered the same condition as that given by the
singularity confinement criterion. While the confinement test seems essentially discrete,
this perturbative method admits as its continuous limit the continuous Painlevé test.

The integration of the Chazy equation in terms of solutions to the (linear) hypergeometric
equation was performed by Chazy [1] and Bureau [5]. For the discrete analogue (6),
this remains an open problem. Indeed, the integration process of the continuous equation
involves an exchange of the dependent and independent variables, a feature which seems
hard to transpose into the discrete world.

Then the perservation of the two-parameter solution (5) appears as a minimal demand.
It leaves only one possibility, which thus may be called the ‘most faithful’ finite-difference
equation representing the Chazy equation.
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